

Large container ships Builder's and operational risks John Martin, Managing Director, Gard (Singapore) Pte Ltd

John Martin, Managing Director, Gard (Singapore) Pte Ltd 12 January 2016

Builder's risk on container ships – the issues

- Container ships growing in size
- Up to 18,000 TEU for recent deliveries...

- Structural issues have occasionally emerged
- Lets take a look at one case

Builder's risk on container ships – the "MOL COMFORT"

- Built 2008, in service until 2013.
- Builder Mitsubishi Heavy Industries (MHI) in Japan well known and respected.
- 86,692 GRT 8,110 TEU 316 m length.
- Broke in two on 17 June 2013. 26 crew saved.
- Stern section sank on 27 June, bow section 11 July.

Builder's Risk on container ships – the "MOL COMFORT"

"MOL COMFORT" - the findings

- 7 holds forward, 2 holds aft
- 6th vessel in series from MHI
- Sailing at 17knots, in 5.5 m waves, windforce 7
- Fracture occurred in bottom shell plating in no 6 hold (i.e. amidships) and the vessel soon separated into two sections
- Sister ships of "MOL COMFORT" were examined and several were found to be suffering from stress cracks in same area
- The vessels in the design series seem to have been 'underdesigned', with insufficient longitudinal strength to sustain torsion and shear stresses during adverse weather.

"MOL COMFORT" - the findings

- The hull structures of all of the sister vessels were upgraded to increase the longitudinal <u>and</u> torsional strength
- NK Classification rules changed as a result
- As of now it seems to be an isolated incident.
- Larger containers ships are prone to longtitudinal and torsional stresses amidships more than any other class of vessel
- With newer and larger ship designs, it is possible that design strength and suitabillity issues may re-emerge

Operational Risks:

- Lets remind ourselves of basic purposes of the Carrier's obligation: DUTY OF CARE
- Requires the carrier to exercise due diligence to make the ship seaworthy before and at the beginning of the voyage.
- - "...the carrier shall properly and carefully load, handle, stow, carry, keep, care for and discharge the goods carried".

(HVR Art III, r2)

Before and during loading

- Inspect apparent condition of cargo:
 - Look for damages.
 - Check seals.
- Correct labeling segregation as per IMDG code and stowage as per plan.

- o Ensure machine is plugged in as soon as it is loaded.
- o Verify loading temperature.
- o Mark loading time on chart.
- Ensure machine and chart is working.

Condition of the container

Frequent damage:

 Holed roof due to misplacement of container spreader by stevedores.

Reefer container - Cooling failure

Inspect your vessel

Twistlock on deck foundation

Prior to sailing

Prepare the vessel for sea:

- Is "prudent over reaction" worth it?
- Prepare your vessel for the unexpected!

Locked and secure?

Container Securing Manual

- A ship specific document, produced by the supplier of container lashing equipment.
- Class approved. Class and IMO requirements.
- For each individual bay of containers it provides:
 - Max vertical weight distribution
 - Max stack weight
 - Application of lashing components
- IMO has minimum GM criteria (0.15 m) for all vessels. The Container Securing Manual also gives a maximum GM.

A variation of twistlocks

No standard for left and right

Prior to sailing

- Ensure appropriate lashing is done as per cargo securing manual.
- Ensure that it is tight.
- Ensure securing of cargo hatches, all weather tight compartments, and also loose gear.

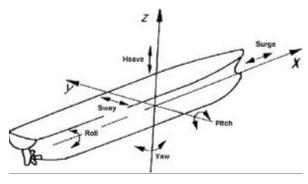
At sea

- Sea is known for its perils.
- However, most can be avoided!

Heavy rolling result

On the rocks....

Collisions with other vessels



At Sea

The containers on deck are exposed to various dynamic forces at sea:

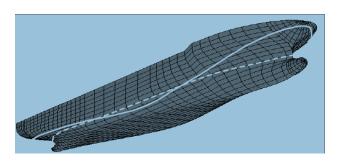
- Ship Motion,
- Green Water,
- Wind forces

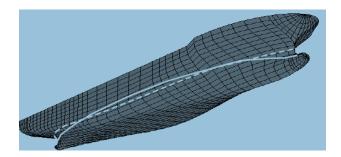
Containers lost overboard

More than an economic issue

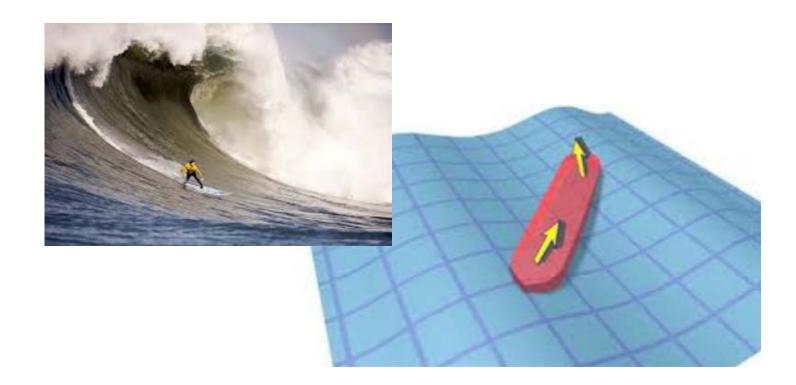
• Environmental problem

Danger to other craft





Following and quartering seas


- V/L encounters the waves with a longer period than in beam, head or bow waves.
- Surf-riding and broaching-to.
- Reduction of intact stability when riding a wave crest amidships.

Surf-riding and broaching-to

Synchronised rolling motion:

- Large rolling motions may be enhanced when the natural rolling period of a ship coincides with the encounter wave period.
- More observed on tender ships where natural period of roll is longer.

Parametric roll motions:

- Usually observed with head or following seas.
- Parametric roll resonance develops when the frequency of stability change is nearly twice that of natural roll frequency, i.e. two wave lengths within one natural roll

- There is no single phenomena of wave motions that affects the vessel at one time.
- Thus more complex situations can be expected.

What can we do?

- Prudent weather routing.
- Compare the actual roll period of the vessel with her natural roll period at frequent intervals.
- Monitor waves / swell
 - o Their length (its dangerous if its between 0.6L to 2.4L);
 - o Their period of encounter. (Synchronized rolling or parametric rolling);
 - Direction of waves / swell.
- Alter speed / course to break any resonance or synchronization.

gard

Damage by water, fire etc.

Hold flooding

Fire in containers

Fire

- Normally cargo in containers should be safe from fires. Risks are:
- Self heating cargo (charcoal, fish meal, steel shavings etc)
- Dangerous cargo/ Chemical reactions i.e. Calcium Hypochlorite
 not to be exposed to heat from sun, heated fuel tank, etc. 3
 ships lost end of 90's
- Improper stowage
- Collisions
- Fire from ship
- Note: It can be very difficult to fight a fire on a container vessel.

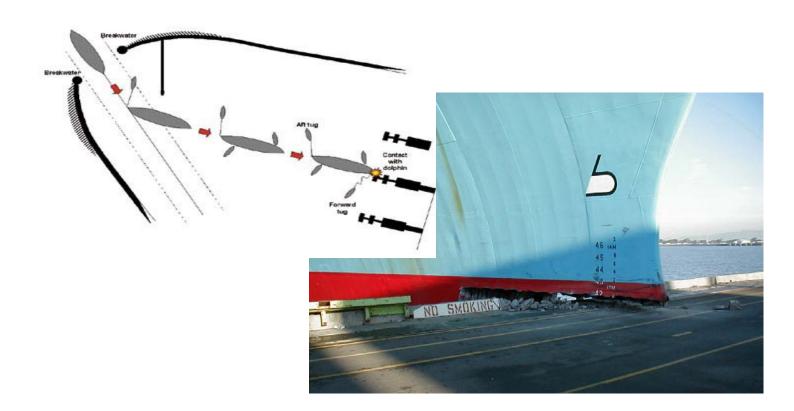
Barbecue charcoal self ignition

- Groundings
- Collisions
- Contact damages (high number)
 - Quays
 - Other fixed and floating objects
 - Damages to fender

Causes...?

- Human Error ?
- Equipment Failure?
- Poor planning?Or
- Failure to plan for unexpected?

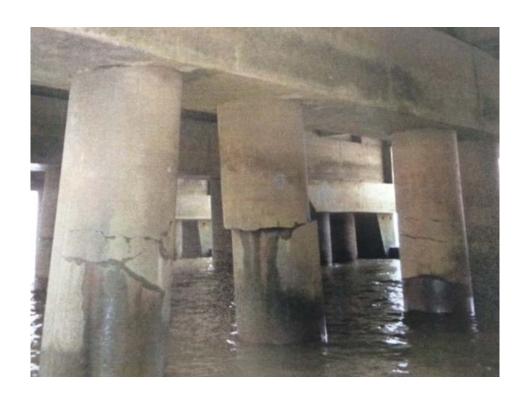
 Titanic - failed to ask themselves 'what if' the ice has progressed further south so as to affect their intended course.



- Over reliance and complacency are single most contributory factors for navigational incidents.
- In constrained waters and within port limits, it is not uncommon for the pilot to join the bridge team.

But....

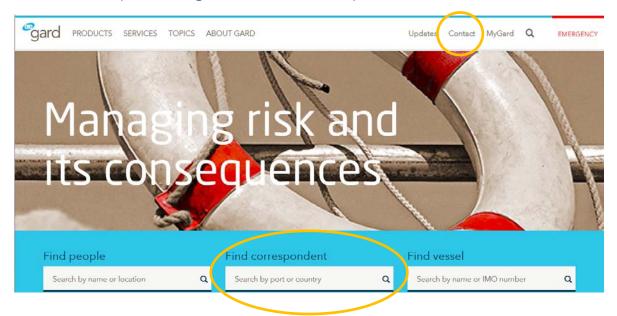
Is there a real team?

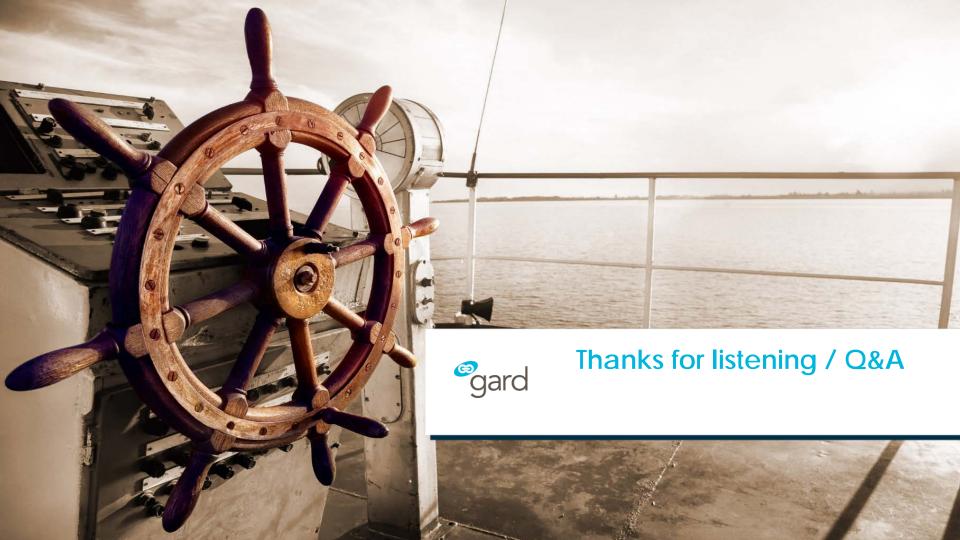


Wharf / fender damages:

- It is important for the bridge team to monitor the progress of the vessel when approaching berth.
- Speed of contact is one among very crucial factors as the momentum of vessel could cause major / expensive damages to berth / fenders.
- Supervision / interaction with pilot essential.

Damage to concrete piles


What can Shipowners do?


- Besides the usual preventive measures, it is important to collect all possible evidences post incident so as to reconstruct the scenario.
- Evidence to include:
 - Log Books;
 - o Other records (Bell Book, E/R Logs, rough notes, course recorder, etc.);
 - o Photographs;
 - Witness statements;
 - o VDR;
 - o ECDIS;
 - o AIS.

Contacting Gard

- All ships should have Gard Correspondent's list on board:
- If you have access to internet:
 - o Go to http://www.gard.no/web/correspondents

